Corynebacterium pseudotuberculosis (CPs) is a Gram-positive, pleomorphic, non-capsulated, non-motile, non-sporulating, facultative anaerobic and intracellular bacterium (Zidan et al, 2013; Algammal, 2016). It is reported to cause suppurative lesions in superficial lymph nodes and subcutaneous tissues in sheep, goat, horses, cattle and camel (Dorella et al, 2006 and Terab et al, 2021). CPs has been classified into two biovars or serovars based on their nitrate-reducing ability. Strains isolated from sheep and goat show negative nitrate reduction and are termed biovar Ovis or biovar I; while strains from horse and cattle exhibit positive nitrate reduction and are called biovar Equi or biovar II (Oliveira et al, 2016).

In large dromedary herds, enlargement and suppuration of lymph nodes may occur as an outbreak (Afzal et al, 1996; Tejedor-Junco et al, 2004; Wernery, 2012; Wernery and Kinne, 2016; Ranjan et al, 2018). Although, biovar I or biovar Ovis is reported as the most common cause of caseous lymphadenitis in camel, occasional involvement of biovar Equi or biovar II is also reported (Tejedor-Junco et al, 2004; Tejedor-Junco et al, 2008). Moreover, Corynebacterium ulcerans can also cause identical clinical lesions in dromedary camel (Tejedor-Junco et al, 2000). Whole-genome sequence of CP strain Cp162, isolated from camel has been done previously (Hassan et al, 2012). Though, identification and classification of genus Corynebacterium are largely based upon their biochemical characteristics, large variation in biochemical properties has been recorded in different Corynebacterium strains isolated from the same host species (Cetinkaya et al, 2002). Differentiation between C. pseudotuberculosis and C. ulcerans on the basis of their biochemical properties is difficult, but can be done accurately on the basis of their genomic analysis and polymerase chain reaction based tools (Heggelund et al, 2015). The present study reports isolation of a CPs biovar Equi or biovar II from...